


HOW FOLLOWING NEC REDUCES DUST EXPLOSION HAZARDS

Karl von Knobelsdorff

CEO/President, Knobelsdorff

January 13, 2021

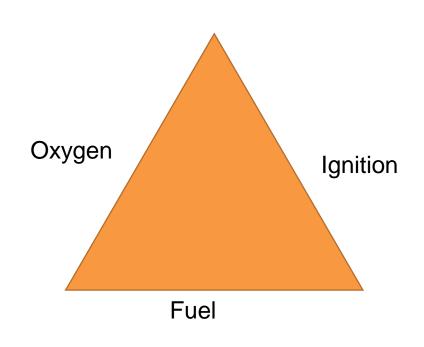
PURPOSE

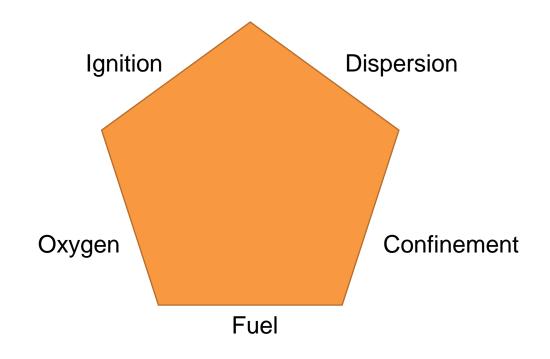
Understanding the Unique Hazards in our Industry

NEC Hazardous Location Classifications

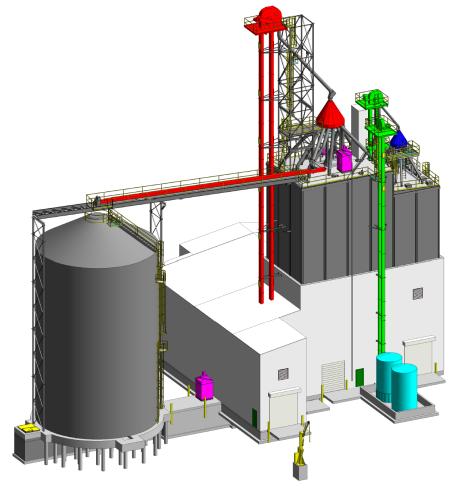
Types of Ignition Sources

NEMA Enclosure Types and Examples


Planning and Design to Reduce Risks of Explosions


Explosion Suppression Systems

HAZARDS IN THE GRAIN INDUSTRY



RECIPE FOR DISASTER

Enclosed Building

Grain Dust

Spark / Heat

HAZARDOUS CLASSIFICATIONS

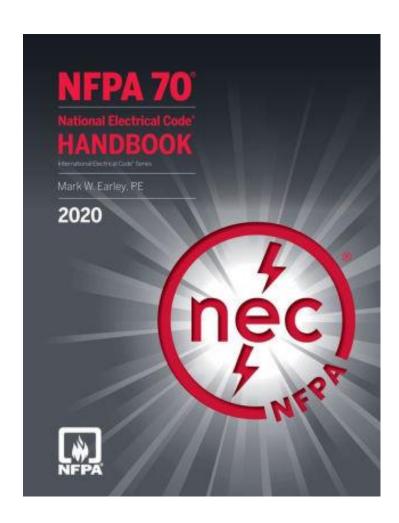
NFPA 70:

National Electrical Code (NEC)

Chapter 5:

Special Occupancies specifically article 500 and 502

NFPA 499


Recommended Practice for Classifications of locations with combustible dust

CLASS

The type of material of substance presenting a hazard

CLASS 1 // Gas & Vapors

CLASS 2 // Dust

CLASS 3 // Fibers

GROUPS

Define the type of hazardous material in the area

Groups A – D: Various Gasses and Vapors Gasoline, Propane, Acetylene, Methane, Toluene, Methanol, Hexane

Group E: Metals Dust

Group F: Carbon Black/Coal Dust

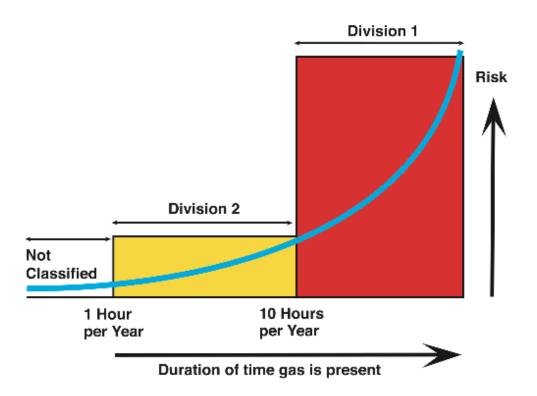
Group G: Grains/Starch/Flour/Wood

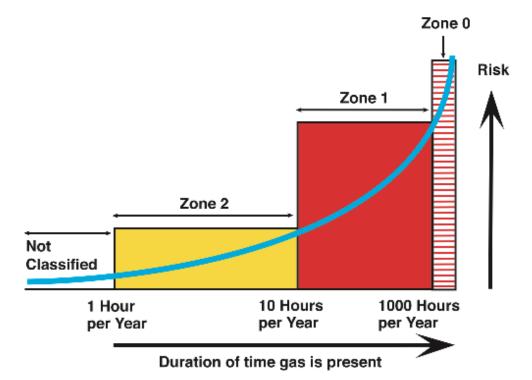
DIVISIONS

Probability of hazardous material being present

DIVISION 1 // During Normal Operating Conditions

DIVISION 2 // Not Likely in Normal Operating Conditions





CLASSIFICATION ZONES

Based on hour per day

HAZARDOUS CLASSIFICATIONS

Class 1 Division 1

Gases exist under normal conditions

Gases exist due to faulty operations

Class 1 Division 2

Gases or Liquids can only be released by rupture or breakdown

Failure of ventilation equipment

HAZARDOUS CLASSIFICATIONS

Class 2 Division 1

High concentrations of dust are present during normal conditions (explosive levels)

Class 2 Division 2

Normal conditions do not present high levels of combustible dust to be explosive

MATERIAL CONCENTRATION REQUIRED FOR EXPLOSION

Saw Dust – 40 g/m3

Corn Dust – 60 g/m3

Wheat/Starch – 30 g/m3

Sugar Dust – 200 g/m3

EXPLOSIVE GRAIN DUST

Common Locations

néc)

- Receiving
- Bin decks
- Loadout

EXPLOSIVE GRAIN DUST

Housekeeping

- Thickness of Dust Layer
- 1/8" or more of dust, serious hazard for secondary explosion
- Secondary Explosions

Motors 502.125

- Totally enclosed Fan-Cooled (TEFC) C2D2 MUST BE T3B
- Explosion Proof (EXP) C2D1

Control Devices 502.115, 502.150

- Position Switches
- Solenoids
- **✓** Temperature Transmitters
- Type 7 and 9 and Intrinsically Safe C2D1
- **Type 4/12 C2D2**

Light Fixtures & Power



- Area Lighting 502.130
- Emergency Lighting 502.130
- Receptacles 502.145
- General Use Equipment 520.135

Powered Industrial Equipment

- Hazard Monitoring (HazMon)
- Bearings
- Rub Blocks
- Speed Sensors
- Static Electricity, often missed source

NEMA RATINGS

National Electrical Manufacturers Association

TYPE 1: Indoor use

TYPE 3: Outdoor use (watertight, dust tight)

TYPE 4/4X: Indoor or Outdoor Use (dust tight)

TYPE 7: Indoor use (explosion-proof) CLASS 1 and 2

TYPE 9: Indoor use (dust ignition proof) CLASS 2

TYPE 1: INDOOR USE

Nonhazardous Locations

TYPE 3: OUTDOOR USE

Nonhazardous Locations

3R Weather Tight

TYPE 4/4X: INDOOR/OUTDOOR USE

Class 2, Division 1 & 2

Depending on what is in the enclosure dictates it's location it can be used

TYPE 7: EXPLOSION PROOF

Class 1, Divisions 1 & 2

Contains the explosion

TYPE 9: DUST IGNITION PROOF

Class 2, Divisions 1 & 2

Not as common

Type 3: NON-HAZARD ONLY

Type 3, 4,12: CONDUITS

Design to keep water & dust out can be used in hazardous locations with no splices

NEMA 3

Does not work in hazardous locations

MIXING OF TYPE 4, 7 & 9 Enclosures

NEMA 7 Explosion Proof

NEMA 7/9 2-Stage Receptacle

NEMA 7/9

NEMA 7/9 Start/Stop Switch

DUAL LISTED MOTOR

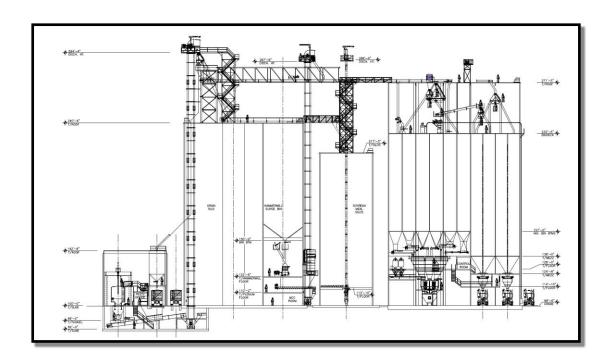
Temperature Code

T3B: Max temp = 165 C

KNOW THE MOTOR PLATES

Different designs for each manufacturer

NOT DUAL LISTED ON MOTOR TAG


Class 1, Divisions 2

Class 1, Zone 2

TEFC, Need to look deeper

DESIGN WITH SAFETY IN MIND

Reduce risk during design phase.

Classify hazardous locations.

Lowering risk and cost.

NFPA 61, 652, 654

NFPA 61- 2020

NFPA

61

Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food Processing Facilities

2020

Hazard Management: Mitigation & Analysis

Facilities/Structures

Conveying equipment

Process equipment

Dust system equipment

Ventilation & isolation

NFPA 61- 2020

NFPA

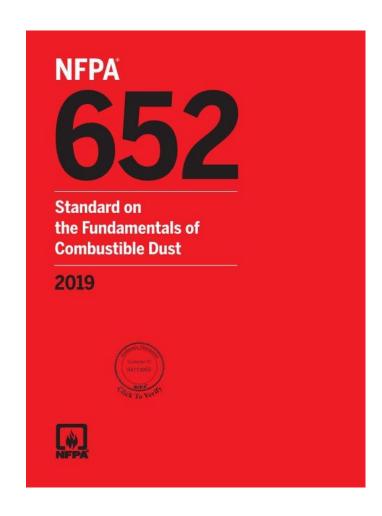
61

Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food Processing Facilities

2020

Management Systems

Procedures and practices


Inspection, testing and maintenance

Training and hazard awareness

NFPA 652- 2019

Hazard identification and Design options

Hazard management: Mitigation and prevention

Housekeeping methodology and procedures

Ignition source control

PPE

Explosion segregation and suppression

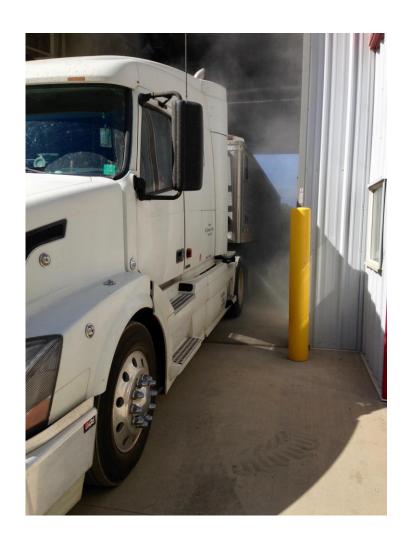
Example dust hazard analysis

DESIGN WITH SAFETY IN MIND

NFPA Standard for the Prevention of Fire and **Dust Explosions from the** Manufacturing, Processing, and Handling of Combustible **Particulate Solids** 2020

Facility/System
Design Dust
Handling Area
Segregation
Equipment
Explosion
Agreement

Storage


Material transfer systems

Dust collection/vacuumed systems cleaning methods

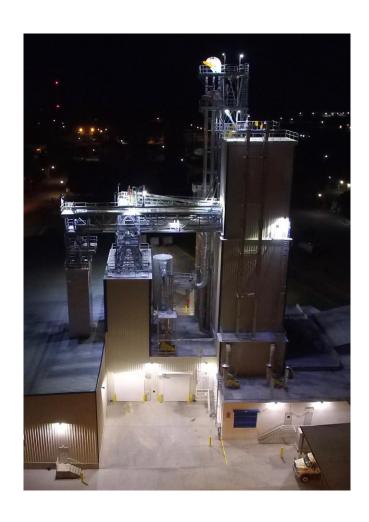
Ignition sources and fire protection

DUST HAZARD ANALYSIS (DHA)

Review of a facility for potential fire or explosion hazards.

Prioritize and generate plans to manage risk.

DESIGN BUILD: CONCRETE FACILITES


Electrical conduit can be cast into the wall

Steel tubes minimize dust on ledges

Conduit an be imbedded into the floor

DESIGN BUILD: STEEL FACILTIES

Interior liner panels conceal girts

Tube steel and solid floors

Checkered plate helps segregate dirty areas

DESIGN BUILD: VENTING

Pressure relief venting

Legs

Filters

Hazardous Area

"H" occupancy

Pressure relief panels

Louvers

DESIGN BUILD: BACKUP PLAN

Flame-arresting and particulate retention vent system

Explosion suppression system

ELECTRICAL HAZARDS

30,000 Arc flash incidents per year 7,000 burn injures

2,000 hospitalizations

400 fatalities

80% of fatalities due to burns, not electrical shock

81 electrocutions in 2015

40% at 250 volts or less

DESIGNING OUT THE HAZARDS

Goal is to NOT wear PPE

Keep employees out of harms way

DESIGN OUT THE HAZARDS

Remote Mains

Smart MCCS

HMI/SCADA for troubleshooting



Q&A

Thank you

Karl von Knobelsdorff, CEO/President KEway.com

Karl@KEway.com

